CENTRES ETRANGERS 11 mai 2022

Dans l'espace, rapporté à un repère orthonormé $(0; \vec{\iota}, \vec{\jmath}, \vec{k})$, on considère les points :

$$A(2; 0; 3)$$
, $B(0; 2; 1)$, $C(-1; -1; 2)$ et $D(3; -3; -1)$.

1. Calcul d'un angle

- a. Calculer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} et en déduire que les points A, B et C ne sont pas alignés.
- b. Calculer les longueurs AB et AC.
- c. À l'aide du produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$, déterminer la valeur du cosinus de l'angle \widehat{BAC} puis donner une valeur approchée de la mesure de l'angle \widehat{BAC} au dixième de degré.

2. Calcul d'une aire

- **a.** Déterminer une équation du plan **3** passant par le point C et perpendiculaire à la droite (AB).
- Donner une représentation paramétrique de la droite (AB).
- c. En déduire les coordonnées du projeté orthogonal E du point C sur la droite (AB), c'est-à-dire du point d'intersection de la droite (AB) et du plan ${\cal P}$
- d. Calculer l'aire du triangle ABC.

3. Calcul d'un volume

- **a.** Soit le point F(1; -1; 3). Montrer que les points A, B, C et F sont coplanaires.
- b. Vérifier que la droite (FD) est orthogonale au plan (ABC).
- c. Sachant que le volume d'un tétraèdre est égal au tiers de l'aire de sa base multiplié par sa hauteur, calculer le volume du tétraèdre ABCD.

Dans l'espace, rapporté à un repère orthonormé $(0; \vec{i}, \vec{j}, \vec{k})$, on considère les points :

$$A(2; 0; 3), B(0; 2; 1), C(-1; -1; 2) \text{ et } D(3; -3; -1).$$

1. Calcul d'un angle

a. Calculer les coordonnées des vecteurs AB et AC et en déduire que les points A, B et C ne sont pas alignés.

$$\overrightarrow{AB}$$
 $\begin{pmatrix} 78-74=-2\\ 78-74=2\\ 38-34=-2 \end{pmatrix}$ et \overrightarrow{AC} $\begin{pmatrix} -3\\ -1 \end{pmatrix}$ sont ils colineaines?
On cherche & EIR tel que \overrightarrow{AB} = & \overrightarrow{AC} $\begin{pmatrix} -2\\ 2 \end{pmatrix}$ = & \times (-3)
(=) $\begin{pmatrix} 8=2/3\\ 8=-2 \end{pmatrix}$ impossible donc \overrightarrow{AB} , \overrightarrow{C} pas alignes.

b. Calculer les longueurs AB et AC.

$$AB = \sqrt{(2e^{-2}A)^{2} + (ye^{-y}A)^{2} + (3e^{-3}A)^{2}} = \sqrt{12}$$

$$AC = \sqrt{(2e^{-2}A)^{2} + (ye^{-y}A)^{2} + (3e^{-3}A)^{2}} = \sqrt{11}$$

c. À l'aide du produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$, déterminer la valeur du cosinus de l'angle \widehat{BAC} puis donner une valeur approchée de la mesure de l'angle \widehat{BAC} au dixième de degré.

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 22' + yy' + 33' = (-2) \times (-3) + 2 \times (-1) + (-2) \times (-4) = 6$$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times COO BAC = \sqrt{12} \times \sqrt{11} \times COO BAC$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times COO BAC = \sqrt{12} \times \sqrt{11} \times COO BAC$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times COO BAC = \sqrt{12} \times \sqrt{11} \times COO BAC$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times COO BAC = \sqrt{12} \times \sqrt{11} \times COO BAC$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times COO BAC = \sqrt{12} \times \sqrt{11} \times COO BAC$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times COO BAC = \sqrt{12} \times \sqrt{11} \times COO BAC$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times COO BAC = \sqrt{12} \times \sqrt{11} \times COO BAC$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times COO BAC = \sqrt{12} \times \sqrt{11} \times COO BAC$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times COO BAC = \sqrt{12} \times \sqrt{11} \times COO BAC$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times COO BAC = \sqrt{12} \times \sqrt{11} \times COO BAC$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times COO BAC = \sqrt{12} \times \sqrt{11} \times COO BAC$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times COO BAC = \sqrt{12} \times \sqrt{11} \times COO BAC$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times COO BAC = \sqrt{12} \times \sqrt{11} \times COO BAC$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times COO BAC = \sqrt{12} \times \sqrt{11} \times COO BAC$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times COO BAC = \sqrt{12} \times \sqrt{11} \times COO BAC$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times COO BAC = \sqrt{12} \times \sqrt{11} \times COO BAC$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times COO BAC = \sqrt{12} \times \sqrt{11} \times COO BAC$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times COO BAC = \sqrt{12} \times \sqrt{11} \times COO BAC$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times COO BAC = \sqrt{12} \times \sqrt{11} \times COO BAC$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times COO BAC = \sqrt{12} \times \sqrt{11} \times COO BAC$

2. Calcul d'une aire

a. Déterminer une équation du plan P passant par le point C et perpendiculaire à la droite (AB).

8 paron fan C et a pour vecteur Mormal
$$\overrightarrow{AB}\begin{pmatrix} -2 \\ 2 \\ -2 \end{pmatrix}$$
 équation cartésienne: $-2x + 2y - 2z + d = 0$

$$c(-1;-1;2) done \qquad -2x(-1) + 2x(-1) - 2x2 + d = 0$$

$$2 - 2 - 4 + d = 0$$

$$\theta: -2x + 2y - 2z + 4 = 0$$

b. Donner une représentation paramétrique de la droite (AB).

(AB) pane par A (2;0;3) et a pour vecteur directeur
$$\overrightarrow{AB}$$
 (-2) $y = 2 - 2t$ $y = 0 + 2t$ $(t \in IR)$ $y = 3 - 2t$

c. En déduire les coordonnées du projeté orthogonal E du point C sur la droite (AB), c'est-à-dire du point d'intersection de la droite (AB) et du plan P

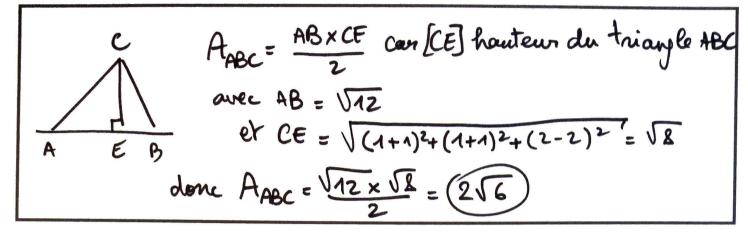
(AB)
$$C \times diffinition et le point d'intersection de P et le AB :
$$-2(2-2t)+2(0+2t)-2(3-2t)+4=0$$

$$(=) -4+4t+4t-6+4t+4=0$$

$$(=) 12t-6=0 (=) t=\frac{6}{12}=\frac{1}{2}$$

$$\begin{cases} 2=2-2\times\frac{1}{2}=2-1=1\\ y=0+2\times\frac{1}{2}=1\\ 3=3-2\times\frac{1}{2}=3-1=2 \end{cases} E(1;1;2)$$$$

d. Calculer l'aire du triangle ABC.



3. Calcul d'un volume

a. Soit le point F(1; -1; 3). Montrer que les points A, B, C et F sont coplanaires.

AB,
$$\overrightarrow{AC}$$
 et \overrightarrow{AF} pont-ils coplanaines? On chenche $k, k' \in \mathbb{R}$ tels que:

$$\overrightarrow{AF} = k \overrightarrow{AB} + k' \overrightarrow{AC} \text{ avec } \overrightarrow{AF} \begin{pmatrix} -1 - 2 = -1 \\ -1 - 0 = -1 \end{pmatrix} (=) \begin{cases} -1 = k \times (-2) + k' \times (-3) \\ -1 = k \times 2 + k' \times (-1) \end{cases}$$

$$(=) \begin{cases} -1 = -2k - 3k' \\ -1 = -2k - 3 \times (-2k) \end{cases} (=) \begin{cases} -1 = 4k \times (-2) + k' \times (-1) \\ -1 = 4k \times (-2) + k' \times (-1) \end{cases}$$

$$(=) \begin{cases} -1 = 2k - k' = -2k - (-2k) = -1 = 4k \times (-2) \\ -1 = 4k \times (-2) = -2k \times (-2k) \end{cases} (=) \begin{cases} -1 = 4k \times (-2) + k' \times (-1) \\ -1 = 2k - k' \times (-2k) \end{cases}$$

$$(=) \begin{cases} -1 = 2k - k' \times (-2k) \times (-2k) = -2k \times (-2k) \times (-2k) \end{cases} (=) \begin{cases} -1 = 4k \times (-2) + k' \times (-2k) \times (-2k) \times (-2k) \end{cases}$$

$$(=) \begin{cases} -1 = 2k - k' \times (-2k) \times$$

b. Vérifier que la droite (FD) est orthogonale au plan (ABC).

$$FD(\frac{1-3}{3-(-3)} = \frac{-2}{2})$$
 et-il orthogonal à 2 vecteurs mon colinéaires \overrightarrow{AB} et \overrightarrow{AC} du plan (ABC) ?

 $\overrightarrow{FD}.\overrightarrow{AB} = (-2) \times (-2) + 2 \times 2 + 4 \times (-2) = 4 + 4 - 8 = 0 : FD \perp \overrightarrow{AB}$
 $\overrightarrow{FD}.\overrightarrow{AC} = (-2) \times (-3) + 2 \times (-1) + 4 \times (-1) = 6 - 2 - 4 = 0 : FD \perp \overrightarrow{AC}$

donc (FD) et orthogonale au plan (ABC)

c. Sachant que le volume d'un tétraèdre est égal au tiers de l'aire de sa base multiplié par sa hauteur, calculer le volume du tétraèdre ABCD.